Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering.

نویسندگان

  • Jingwei Xie
  • Matthew R Macewan
  • Stephanie M Willerth
  • Xiaoran Li
  • Daniel W Moran
  • Shelly E Sakiyama-Elbert
  • Younan Xia
چکیده

We have prepared conductive core-sheath nanofibers via a combination of electrospinning and aqueous polymerization. Specifically, nanofibers electrospun from poly(ε-caprolactone) (PCL) and poly((L)-lactide) (PLA) were employed as templates to generate uniform sheaths of polypyrrole (PPy) via in situ polymerization. These conductive core-sheath nanofibers offer a unique system for studying the synergistic effect of different cues on neurite outgrowth in vitro. We found that explanted dorsal root ganglia (DRG) adhered well to the conductive core-sheath nanofibers and generated neurites across the surface when there was a nerve growth factor in the medium. Furthermore, the neurites could be oriented along one direction and enhanced by 82% in terms of maximum length when uniaxially aligned conductive core-sheath nanofibers are compared with their random counterparts. Electrical stimulation, when applied through the mats of conductive core-sheath nanofibers, was found to further increase the maximum length of neurite for random and aligned samples by 83% and 47%, respectively, relative to the controls without electrical stimulation. Combined together, these results suggest the potential use of the conductive core-sheath nanofibers as scaffolds in applications such as neural tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide.

Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous m...

متن کامل

Synthesis of Polypyrrole Coated SnO2-ZnO Electrospun Nanofibers via Vapor Phase Polymerization Method

This paper reports the synthesis of polypyrrole coated SnO2/ZnOelectrospunnanofibers via vapor phase polymerization method. In order to prepare one dimensional (SnO2- ZnO)/polypyrrole with the core sheath structure, first SnO2-ZnO composite nanofibers were synthesized via electrospinning method followed by adsorption of Fe 3+  on the surface of the SnO2-ZnO nanofibers and finally pyrrole w...

متن کامل

A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles.

This study describes development of a novel controlled drug release system for multiple drugs, it consisted of Chitosan nanoparticles/PCL composite electrospun nanofibers with core-sheath structures. Two model agents' rhodamine B and naproxen were successfully loaded in the core and sheath region respectively. The behavior of these two agents demonstrated a good controlled release and temporali...

متن کامل

Preparation and characterization of electrospun core sheath nanofibers from multi-walled carbon nanotubes and poly(vinyl pyrrolidone).

Electrospinning is a versatile technique to prepare polymer fibers in nano to micrometer size ranges using very high electrostatic fields. Electrospun nanofibers with tunable porosity and high specific surface area have various applications, including chromatographic supports for protein separation, biomedical devices, tissue engineering and drug delivery matrices, and as key components in sola...

متن کامل

Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables

Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced functional materials

دوره 19 14  شماره 

صفحات  -

تاریخ انتشار 2009